"/>

国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Aussie-led research taps advanced quantum technology for novel chemical bond simulation
Source: Xinhua   2018-07-25 10:53:23

SYDNEY, July 25 (Xinhua) -- An Australian-led group of researchers on Wednesday said they have demonstrated a ground-breaking way to simulate chemical bonds and reactions via powerful quantum computers, an emerging technology that scientists are racing to apply in fields ranging from medicine to industrial chemistry.

"Even the largest supercomputers are struggling to model accurately anything but the most basic chemistry. Quantum computers simulating nature, however, unlock a whole new way of understanding matter. They will provide us with a new tool to solve problems in materials science, medicine and industrial chemistry using simulations," University of Sydney physicist Dr Cornelius Hempel, who led the team of international researchers, said in a statement on Wednesday.

Quantum computers, using technology based on quantum mechanics or fundamental physics at the atomic and subatomic level, are considered to be significantly more powerful in computing power than their common counterparts.

While the "moving parts" of anything but the most-simple chemical processes are beyond the capacity of the biggest and fastest supercomputers, the quantum computers can be harnessed to plug those gaps. Most experts now agree that quantum chemistry, the science of understanding the complicated bonds and reactions of molecules under the quantum mechanics framework, is going to be one of the first "killer apps" of the emergent technology, said the researchers. Their work has been published in the Physical Review X scientific journal.

The findings can have significant applications for industries including the production of fertilizers, development of organic solar cells and design of personalized medicines, they said.

"Quantum chemistry is an example where the advantages of a quantum computer will very soon become apparent in practical applications," said research paper co-author Professor Rainer Blatt from the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria.

Editor: Yurou
Related News
Xinhuanet

Aussie-led research taps advanced quantum technology for novel chemical bond simulation

Source: Xinhua 2018-07-25 10:53:23
[Editor: huaxia]

SYDNEY, July 25 (Xinhua) -- An Australian-led group of researchers on Wednesday said they have demonstrated a ground-breaking way to simulate chemical bonds and reactions via powerful quantum computers, an emerging technology that scientists are racing to apply in fields ranging from medicine to industrial chemistry.

"Even the largest supercomputers are struggling to model accurately anything but the most basic chemistry. Quantum computers simulating nature, however, unlock a whole new way of understanding matter. They will provide us with a new tool to solve problems in materials science, medicine and industrial chemistry using simulations," University of Sydney physicist Dr Cornelius Hempel, who led the team of international researchers, said in a statement on Wednesday.

Quantum computers, using technology based on quantum mechanics or fundamental physics at the atomic and subatomic level, are considered to be significantly more powerful in computing power than their common counterparts.

While the "moving parts" of anything but the most-simple chemical processes are beyond the capacity of the biggest and fastest supercomputers, the quantum computers can be harnessed to plug those gaps. Most experts now agree that quantum chemistry, the science of understanding the complicated bonds and reactions of molecules under the quantum mechanics framework, is going to be one of the first "killer apps" of the emergent technology, said the researchers. Their work has been published in the Physical Review X scientific journal.

The findings can have significant applications for industries including the production of fertilizers, development of organic solar cells and design of personalized medicines, they said.

"Quantum chemistry is an example where the advantages of a quantum computer will very soon become apparent in practical applications," said research paper co-author Professor Rainer Blatt from the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria.

[Editor: huaxia]
010020070750000000000000011100001373469981
主站蜘蛛池模板: 武鸣县| 土默特左旗| 清河县| 和静县| 阿尔山市| 陈巴尔虎旗| 龙泉市| 饶河县| 饶阳县| 昌平区| 永泰县| 木里| 芦山县| 怀来县| 云南省| 玉龙| 维西| 长武县| 黑河市| 三门县| 乐安县| 利津县| 延安市| 安岳县| 芦山县| 樟树市| 微山县| 泰顺县| 桐城市| 紫阳县| 宝鸡市| 定南县| 蒙阴县| 安达市| 淳化县| 望奎县| 广安市| 盖州市| 武定县| 阿城市| 富锦市|