国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

World security leaders rely on AI, machine learning to defend against threats

Source: Xinhua| 2018-02-22 07:42:10|Editor: pengying
Video PlayerClose

SAN FRANCISCO, Feb. 21 (Xinhua) -- Security professionals worldwide are increasingly turning to artificial intelligence (AI) and machine learning to defend against malware threats, U.S. tech leader Cisco said Wednesday in its security report.

Findings of the "Cisco 2018 Annual Cybersecurity Report" show 39 percent of organizations are reliant on automation, 34 percent on machine learning and 32 percent highly reliant on AI.

It said encryption has been used as a tool in malware production to evade detection and conceal command-and-control activity.

"While encryption is meant to enhance security, the expanded volume of encrypted web traffic (50 percent as of October 2017) -- both legitimate and malicious -- has created more challenges for defenders trying to identify and monitor potential threats," the report said.

Over time, machine learning can "learn" how to automatically detect unusual patterns in encrypted web traffic, cloud, and IoT environments, it added.

The report noted that about 3,600 chief information security officers surveyed admitted that they were eager to add tools like machine learning and AI to fight malware threats.

"Last year's evolution of malware demonstrates that our adversaries continue to learn," said John N. Stewart, senior vice president and chief security and trust Officer of Cisco.

More than 500,000 U.S. dollars have lost in damage as a result of over half of all those attacks, the report said.

While attackers are taking advantage of the lack of advanced security, the report said, 57 percent of security professionals surveyed stated that they are increasingly using cloud to protect data security.

The Cisco 2018 Annual Cybersecurity Report, now in its 11th year, highlights findings from cybersecurity trends observed over the past 12-18 months from its threat research and technology partners.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001369900211
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
亚洲网友自拍| 午夜精品久久久久久99热| 欧美日韩一卡| 久久亚洲综合色一区二区三区| 亚洲一级电影| 日韩一级精品| 最新日韩在线| 国内精品视频一区| 国产精品青草综合久久久久99| 欧美连裤袜在线视频| 久久久久久欧美| 久久不见久久见免费视频1| 亚洲私人黄色宅男| 一区二区三区日韩精品| 亚洲激情综合| 亚洲国产欧美一区| 亚洲电影观看| 亚洲国产精品一区二区三区| 亚洲第一精品夜夜躁人人爽| 极品少妇一区二区三区| 国内免费精品永久在线视频| 国产日韩1区| 国产免费成人| 国产精品一香蕉国产线看观看 | 国产精品国产三级国产专播品爱网| 欧美国产日韩免费| 欧美护士18xxxxhd| 欧美精品乱人伦久久久久久| 欧美成熟视频| 欧美激情视频网站| 欧美人成在线| 欧美日韩一级大片网址| 欧美日韩国产高清| 欧美亚洲成人免费| 国产精品日韩在线观看| 国产精品午夜久久| 国产亚洲欧洲997久久综合| 国内久久精品| 亚洲人www| 亚洲五月六月| 欧美中文字幕第一页| 久久久久久夜| 欧美黄网免费在线观看| 欧美日韩亚洲国产精品| 欧美日韩一区二区视频在线 | 亚洲国产精品久久91精品| 亚洲人妖在线| 一区二区三区鲁丝不卡| 亚洲欧美日韩高清| 欧美自拍偷拍午夜视频| 久热国产精品视频| 欧美高清视频在线播放| 欧美视频在线观看免费网址| 国产精品视频一二| 激情五月***国产精品| 在线播放亚洲| 宅男噜噜噜66国产日韩在线观看| 亚洲综合色在线| 久久久亚洲午夜电影| 欧美精品一区三区在线观看| 国产精品亚洲一区| 狠狠久久亚洲欧美| 亚洲精选视频免费看| 亚洲欧美不卡| 久久五月婷婷丁香社区| 国产精品视频九色porn| 红桃视频一区| 夜夜嗨av一区二区三区四季av| 亚洲欧美日本日韩| 老牛国产精品一区的观看方式| 欧美日韩成人综合| 国产精品私人影院| 狠狠色丁香婷婷综合| 日韩视频一区二区三区在线播放免费观看 | 亚洲视频免费观看| 久久精品一本久久99精品| 欧美激情精品久久久久久蜜臀| 国产精品女主播| 亚洲第一偷拍| 亚洲欧美日韩人成在线播放| 久久综合给合| 国产精品红桃| 亚洲国产精品va在线观看黑人| 亚洲一区二区视频| 久久资源av| 国产精品高潮呻吟久久av黑人| 在线不卡欧美| 亚洲免费影视| 欧美日韩成人网| 国产一区二区久久久| 一卡二卡3卡四卡高清精品视频| 久久久人人人| 国产精品高清免费在线观看| 亚洲国产婷婷综合在线精品| 欧美在线观看视频一区二区| 欧美日韩一区在线| 亚洲国产欧美久久| 欧美一区二区三区四区在线| 欧美国产日本在线| 国产自产v一区二区三区c| av成人免费| 欧美不卡视频| 黑人中文字幕一区二区三区| 亚洲一区二区三区免费观看| 欧美不卡视频一区发布| 国产日韩欧美视频| 亚洲视频在线播放| 欧美精品激情在线观看| 激情久久综合| 久久国产精品久久久| 欧美性色综合| 亚洲作爱视频| 永久免费精品影视网站| 亚洲一区二区三区在线观看视频| 久久网站免费| 国内精品久久久久久久影视麻豆 | 亚洲毛片一区二区| 蜜桃av一区二区三区| 国产一区二区视频在线观看| 午夜伦理片一区| 国产精品99一区| 99国产精品| 欧美激情视频一区二区三区在线播放 | 欧美体内she精视频| 亚洲国产精品第一区二区| 久久精彩免费视频| 国产毛片久久| 亚洲尤物在线视频观看| 国产精品成人播放| 一本色道久久综合一区| 欧美日韩视频在线第一区| 亚洲精品一区二| 欧美伦理91| 91久久国产自产拍夜夜嗨| 美女主播视频一区| 激情综合久久| 久久人人超碰| 黄网动漫久久久| 久久精品亚洲一区二区三区浴池| 国产一级久久| 久久人人爽人人爽| 在线精品一区二区| 欧美**人妖| 亚洲免费成人| 欧美激情精品久久久久久蜜臀| 亚洲欧洲一区二区在线观看| 欧美激情1区| 99re热这里只有精品免费视频| 欧美日韩精品是欧美日韩精品| 日韩视频一区二区在线观看| 欧美啪啪一区| 亚洲天堂免费观看| 国产精品久久激情| 一本色道婷婷久久欧美| 欧美日韩亚洲系列| 在线一区视频| 欧美午夜精品久久久久久孕妇| 在线视频欧美一区| 国产精品视频免费| 午夜国产精品视频| 99亚洲精品| 欧美日韩亚洲一区二区| 亚洲一区二区三区三| 国产精品视频99| 久久久999精品视频| 亚洲电影观看| 欧美日韩精品在线观看| 亚洲少妇一区| 国产日韩在线亚洲字幕中文| 久久久99爱| 精品成人国产| 欧美大秀在线观看| 日韩香蕉视频| 欧美日韩在线三区| 午夜精品久久久久久久蜜桃app| 国内精品视频久久| 欧美成人一区二区三区片免费| 99国产精品一区| 国产精品入口夜色视频大尺度| 久久国产精品一区二区三区四区| 亚洲电影免费观看高清完整版| 欧美日韩亚洲国产精品| 欧美一区二区三区成人| 狠狠88综合久久久久综合网| 免费观看国产成人| 亚洲美女毛片| 欧美亚洲成人精品| 久久久久久一区| 亚洲精品国产精品乱码不99| 欧美日韩不卡一区| 欧美一区二区三区四区视频| 亚洲国产综合视频在线观看| 国产精品久久看| 久久综合狠狠| 亚洲天堂偷拍| 黄色日韩网站视频| 欧美女激情福利| 欧美一区二区三区四区高清| 亚洲精品一区二区三区婷婷月 | 日韩午夜精品| 国产一区二区三区在线观看视频| 欧美精品午夜视频| 久久九九国产| 亚洲一区二区三区四区在线观看|