国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

AI used to predict survival rates of patients with brain tumors

Source: Xinhua| 2018-03-14 04:56:33|Editor: yan
Video PlayerClose

WASHINGTON, March 13 (Xinhua) -- American researchers have developed an artificial intelligence (AI) software that can predict the survival rates of patients diagnosed with glioma, a deadly form of brain tumor, by examining data from tissue biopsies.

The approach, reported on Tuesday in the Proceedings of the National Academy of Sciences, is more accurate than the predictions of doctors who undergo years of highly-specialized training for the same purpose.

Gliomas are often fatal within two years of diagnosis, but some patients can survive for 10 years or more.

Therefore, predicting the course of a patient's disease at diagnosis is critical in selecting the right therapy and in helping patients and their families to plan their lives.

Doctors currently use a combination of genomic tests and microscopic examination of tissues to predict how a patient's disease will behave clinically or respond to therapy.

The reliable genomic testing cannot completely explain patient outcomes and microscopic examination is so subjective that different pathologists often providing different interpretations of the same case.

"There are large opportunities for more systematic and clinically meaningful data extraction using computational approaches," said Daniel J. Brat, the lead neuropathologist on the study, who began developing the software at the Winship Cancer Institute of Emory University.

The researchers used an approach called deep-learning to train the software to learn visual patterns associated with patient survival using microscopic images of brain tumor tissue samples.

When the software was trained using both images and genomic data, its predictions of how long patients survive beyond diagnosis were more accurate than those of human pathologists, according to researchers.

The researchers also demonstrated that the software learns to recognize many of the same structures and patterns in the tissues that pathologists use when performing their examinations.

The researchers are looking forward to future studies to evaluate whether the software can be used to improve outcomes for newly diagnosed patients.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521370371691
主站蜘蛛池模板: 定安县| 托里县| 台湾省| 武胜县| 景洪市| 马关县| 剑河县| 图们市| 新乡县| 客服| 炉霍县| 阜新市| 蕉岭县| 健康| 集贤县| 广饶县| 大荔县| 清徐县| 鸡西市| 山东省| 民权县| 辰溪县| 阳春市| 中江县| 大方县| 广汉市| 郑州市| 防城港市| 鹤峰县| 河间市| 澎湖县| 罗甸县| 肇东市| 清水河县| 辽中县| 韶山市| 应用必备| 普陀区| 公安县| 遵义县| 文安县|