国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Latest light beam technology eyes 100-times-faster internet speeds: Aussie researchers

Source: Xinhua| 2018-10-24 17:11:29|Editor: xuxin
Video PlayerClose

SYDNEY, Oct. 24 (Xinhua) -- Advanced technology harnessing unique features of light beams could carry more data and process it more quickly, pointing to internet speeds that are 100 times faster than what connections now allow, according to a latest Australian-linked research.

Current broadband fiber optics carry information on pulses of light but the way the light is encoded at one end and processed at the other affects data speeds. The advanced nanophotonic devices being developed by researchers can read a special form of "twisted" light and forms the missing key to unlocking super-fast, ultra-broadband communications, RMIT University researcher Haoran Ren said in a statement on Wednesday.

"Present-day optical communications are heading towards a 'capacity crunch' as they fail to keep up with the ever-increasing demands of Big Data," said Ren, who co-led the report of the findings.

"What we've managed to do is accurately transmit data via light at its highest capacity in a way that will allow us to massively increase our bandwidth."

Current state-of-the-art fiber-optic communications, like those used in Australia's National Broadband Network, tap a fraction of light's actual capacity by carrying data on the color spectrum.

New broadband technologies being developed use the oscillation or shape of light waves to encode data, increasing bandwidth by also making use of light aspects that cannot be easily detected, according to the university.

The latest devices help carry data on light waves that have been "twisted" into a "spiral" to further increase their capacity, it said.

The new technology, reported in scientific journal Nature Communications, can also be used to receive advanced quantum information, with applications for a wide range of cutting-edge communications and computing research, said the university's Professor Min Gu.

"Our nano-electronic device will unlock the full potential of twisted light for future optical and quantum communications," said Gu.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001375551741
主站蜘蛛池模板: 义乌市| 札达县| 棋牌| 长汀县| 凤翔县| 金华市| 迭部县| 清河县| 锦州市| 长子县| 炉霍县| 湘乡市| 临清市| 大洼县| 砀山县| 文安县| 沐川县| 科技| 汝阳县| 石阡县| 葵青区| 南宫市| 临漳县| 杭锦旗| 南昌市| 丰城市| 平武县| 江门市| 米林县| 莱芜市| 泗水县| 尚志市| 民权县| 永州市| 罗山县| 民勤县| 巫溪县| 鞍山市| 盐津县| 河西区| 天等县|