国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Study finds clues to living a stronger, longer life

Source: Xinhua| 2019-01-03 06:54:42|Editor: Yamei
Video PlayerClose

CHICAGO, Jan. 2 (Xinhua) -- Researchers from the University of Michigan (UM) Life Sciences Institute have uncovered a cause of declining motor function and increased frailty in tiny aging worms, and identified a molecule that can be targeted to improve motor function.

As humans and animals age, their motor functions progressively deteriorate. Millimeter-long roundworms called nematodes exhibit aging patterns remarkably similar to those of other animals, and they only live about three weeks, making them an ideal model system for studying aging.

To better understand how the interactions between cells changed as worms aged, the researchers investigated the junctions where motor neurons communicate with muscle tissue.

They identified a molecule called SLO-1, namely slowpoke potassium channel family member 1, that acts as a regulator for these communications. The molecule dampens neurons' activity, slowing down the signals from neurons to muscle tissue and reducing motor function.

The researchers manipulated SLO-1, first using genetic tools and then using a drug called paxilline. In both cases, they observed two major effects in the roundworms: not only did they maintain better motor function later in life, they also lived longer than normal roundworms.

"It's not necessarily ideal to have a longer lifespan without improvements in health or strength," said Shawn Xu, a professor of molecular and integrative physiology at the UM Medical School. "But we found that the interventions improved both parameters-these worms are healthier and they live longer."

More surprisingly, the timing of the interventions drastically changed the effects on both motor function and lifespan. When SLO-1 was manipulated early in the worms' life, it had no effect on lifespan and in fact had a detrimental effect on motor function in young worms. But when the activity of SLO-1 was blocked in mid-adulthood, both motor function and lifespan improved.

As the SLO-1 channel is preserved across many species, the researchers hope these findings will encourage others to examine its role in aging in other model organisms.

In the next step, the researchers hope to determine the importance of the SLO-1 channel in early development in the worms, and to better understand the mechanisms through which it affects lifespan.

The findings were published on Wednesday in Science Advances.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011103261377156451
主站蜘蛛池模板: 库伦旗| 巴塘县| 渝中区| 龙胜| 隆昌县| 河曲县| 万载县| 大足县| 许昌市| 鹿邑县| 漳州市| 太谷县| 岳池县| 乌海市| 武威市| 亚东县| 南丰县| 加查县| 沭阳县| 长治市| 清丰县| 昆明市| 靖宇县| 咸丰县| 油尖旺区| 都兰县| 临城县| 高密市| 西安市| 六枝特区| 大城县| 闻喜县| 县级市| 含山县| 灵璧县| 渭南市| 云和县| 双江| 罗定市| 普陀区| 洛浦县|