国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Scientists develop an AI-enabled tool to screen anxiety, depression among kids

Source: Xinhua| 2019-01-17 03:12:39|Editor: yan
Video PlayerClose

WASHINGTON, Jan. 16 (Xinhua) -- Kids are not as happy as we usually expect. About 20 percent of them suffer from anxiety and depression, but those internalized disorders are hard to be noticed.

A study published on Wednesday in the journal PLOS ONE described an AI-enabled tool to screen children for internalizing disorders early and accurately.

Researchers from University of Vermont and University of Michigan combined a sensor and an algorithm with the method that elicits the children's behaviors and feelings like anxiety.

The children in a dimly-lit room was told to anticipate something to look in a covered glass box, which turned out to be a fake snake. Then the researchers scored their responses, traditionally through the recorded video, but in the new study, aromatically by a wearable motion sensor and the machine learning algorithm.

The new tool identified differences between children with internalizing disorders and those without. The accuracy reached 81 percent, which was better than the standard parent questionnaire, according to the study.

The algorithm learned that children's movement before the snake was revealed was the most indicative since those with internalizing disorders tended to turn away from the potential threat.

It showed that they anticipated more anxiety, and the turning-away behavior was a negative reaction.

Just 20 seconds of data from the anticipation phase provided by the sensors and algorithm is enough to make a decision while the traditional video coding method may take several months.

It opens up possibilities of large-scale screening to identify those anxious depressed kids.

Early intervention is key because young children's brains are extremely malleable and respond well to treatment, said the paper's co-author Maria Muzik at University of Michigan.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521377496681
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
狠狠色伊人亚洲综合网站色| 国产精品人人做人人爽人人添| 久久久国产精品亚洲一区| 久久国产精品一区二区三区四区 | 亚洲视频你懂的| 在线视频日韩精品| 久久gogo国模裸体人体| 美女日韩欧美| 国产精品成人aaaaa网站| 国内不卡一区二区三区| 亚洲日本在线观看| 午夜精品久久久久久久久久久久久 | av成人免费观看| 校园春色国产精品| 欧美a级一区| 国产精品久久久久久久久免费桃花| 国产亚洲一级高清| 亚洲精品视频在线观看免费| 亚洲欧美日韩中文在线制服| 免费视频一区二区三区在线观看| 欧美日韩综合久久| 尤物在线精品| 亚洲一区图片| 蜜臀av一级做a爰片久久 | 国产亚洲激情在线| 99视频一区| 久久久久国色av免费观看性色| 欧美精品在线一区| 激情视频一区二区| 亚洲综合二区| 欧美激情免费在线| 国内成人自拍视频| 亚洲视频在线观看三级| 老司机精品福利视频| 国产精品久久久爽爽爽麻豆色哟哟| 在线观看免费视频综合| 亚洲欧美日韩国产综合精品二区| 免费久久久一本精品久久区| 国产精品一区二区久久| 日韩一级视频免费观看在线| 久久久久久久波多野高潮日日| 欧美日韩在线亚洲一区蜜芽| 亚洲国产99精品国自产| 亚洲欧美在线aaa| 欧美日韩成人在线观看| 亚洲第一色在线| 欧美一区二区视频免费观看| 欧美视频福利| 亚洲免费观看视频| 久久婷婷国产综合精品青草| 国产精品一区二区在线观看| 在线一区二区三区四区五区| 欧美国产高清| 在线成人欧美| 久久久噜久噜久久综合| 国产欧美一区二区三区视频| 在线一区欧美| 欧美日韩国产精品| 亚洲国产91色在线| 裸体一区二区三区| 极品少妇一区二区三区精品视频| 午夜欧美理论片| 欧美性片在线观看| 夜夜精品视频| 欧美精品一区二区三区蜜桃| 亚洲国产成人久久综合| 久久久久久久一区二区三区| 国产日本欧美在线观看| 亚洲欧美日韩精品久久久久| 国产精品第十页| 国产精品99久久久久久人| 欧美日韩国产不卡| 99爱精品视频| 欧美日韩精品三区| 亚洲免费黄色| 欧美日韩亚洲另类| 一区二区三区你懂的| 欧美日韩国产麻豆| 99精品欧美一区二区蜜桃免费| 欧美黄色精品| 日韩午夜av电影| 欧美日韩久久久久久| 一区二区三区不卡视频在线观看 | 亚洲网站在线播放| 欧美日韩精品一二三区| 一本久道久久综合狠狠爱| 欧美日韩岛国| 亚洲视频在线看| 国产精品毛片a∨一区二区三区| 亚洲一区日本| 国产欧美日韩一区| 欧美一区高清| 黑人巨大精品欧美一区二区 | 欧美日韩精品三区| 亚洲午夜免费视频| 国产日韩综合一区二区性色av| 久久国产精品久久国产精品 | 一本色道久久精品| 欧美性猛交xxxx乱大交蜜桃| 亚洲专区在线视频| 国产丝袜一区二区| 噜噜噜91成人网| 亚洲日本成人网| 欧美午夜视频一区二区| 欧美亚洲一区| 一区免费在线| 欧美日韩成人一区二区三区| 亚洲一区免费在线观看| 国产一区二区三区久久| 免费不卡在线观看| 一区二区三区四区五区精品视频| 国产精品久久久久77777| 欧美一区二区三区免费大片| 韩日在线一区| 欧美久久成人| 香港久久久电影| 在线播放日韩专区| 欧美日本不卡| 先锋影院在线亚洲| 亚洲黄色av| 国产精品久久久一本精品| 久久精品免费播放| 亚洲精品中文字| 国产伦一区二区三区色一情| 葵司免费一区二区三区四区五区| 日韩视频在线观看一区二区| 国产精品网站视频| 麻豆精品网站| 亚洲视频网在线直播| 国产午夜精品在线| 欧美国产日产韩国视频| 亚洲永久精品大片| 伊人夜夜躁av伊人久久| 欧美日韩综合网| 久久夜色精品国产欧美乱| av成人手机在线| 国产在线国偷精品产拍免费yy| 欧美黄色一区| 欧美一区二区性| 亚洲精选久久| 狠狠噜噜久久| 欧美午夜免费电影| 久久婷婷久久| 午夜激情一区| 亚洲精品乱码久久久久久蜜桃麻豆 | 日韩一级黄色大片| 国内外成人在线视频| 欧美日韩中文字幕| 久久综合久久久久88| 亚洲欧美综合v| 亚洲精品国产精品国自产观看| 国产欧美日韩激情| 欧美日韩中文字幕在线视频| 另类春色校园亚洲| 欧美亚洲视频| 国产精品99久久久久久久vr| 亚洲高清不卡在线观看| 国产日韩欧美日韩| 国产精品mm| 美国成人毛片| 久久国产精品一区二区| 中日韩美女免费视频网址在线观看| 精品福利免费观看| 国产美女诱惑一区二区| 欧美日韩在线大尺度| 免费观看欧美在线视频的网站| 午夜精品一区二区三区在线视 | 欧美少妇一区二区| 蜜桃av噜噜一区二区三区| 欧美在线观看视频一区二区| 亚洲一区二区三区四区五区午夜 | 国内精品一区二区| 国产伦精品一区二区三| 欧美视频第二页| 欧美国产日韩精品免费观看| 久久久精彩视频| 欧美一级免费视频| 亚洲一二三区在线观看| 日韩视频专区| 最新中文字幕一区二区三区| 狠狠色2019综合网| 国产精自产拍久久久久久| 国产精品xvideos88| 欧美日韩精品一区| 欧美日韩精品免费观看视频| 欧美激情一区二区三区在线| 美女在线一区二区| 久久一区二区三区超碰国产精品| 欧美一区三区三区高中清蜜桃 | 亚洲精品色婷婷福利天堂| 在线视频观看日韩| 一区二区视频免费在线观看| 国产偷国产偷精品高清尤物| 国产精品色在线| 国产精品卡一卡二| 国产精品久久久久久久久久直播 | 91久久国产综合久久| 亚洲黄色小视频| 亚洲国产99| 亚洲欧洲精品一区二区三区不卡| 亚洲国产天堂久久综合| 亚洲第一在线综合在线| 亚洲电影第1页| 亚洲国产精品毛片|