国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

New system helps self-driving cars predict pedestrian movement

Source: Xinhua| 2019-02-13 08:25:31|Editor: WX
Video PlayerClose

CHICAGO, Feb. 12 (Xinhua) -- Researchers at the University of Michigan (UM) are teaching self-driving cars to recognize and predict pedestrian movements with greater precision by zeroing in on humans' gait, body symmetry and foot placement.

According to a news released posted on UM's website Tuesday, the researchers captured video snippets of humans in motion in data collected by vehicles through cameras, LiDAR and GPS, and recreated them in 3D computer simulation.

And based on this, they've created a "biomechanically inspired recurrent neural network" that catalogs human movements, with which they can predict poses and future locations for one or several pedestrians up to about 50 yards from the vehicle, about the scale of a city intersection.

The results have shown that this new system improves upon a driverless vehicle's capacity to recognize what's most likely to happen next.

"The median translation error of our prediction was approximately 10 cm after one second and less than 80 cm after six seconds. All other comparison methods were up to 7 meters off," said Matthew Johnson-Roberson, associate professor in UM's Department of Naval Architecture and Marine Engineering. "We're better at figuring out where a person is going to be."

To rein in the number of options for predicting the next movement, the researchers applied the physical constraints of the human body: human's inability to fly or fastest possible speed on foot.

"Now, we're training the system to recognize motion and making predictions of not just one single thing, whether it's a stop sign or not, but where that pedestrian's body will be at the next step and the next and the next," said Johnson-Roberson.

Prior work in the area typically looked only at still images. It wasn't really concerned with how people move in three dimensions, said Ram Vasudevan, UM assistant professor of mechanical engineering.

By utilizing video clips that run for several seconds, the UM system can study the first half of the snippet to make its predictions, and then verify the accuracy with the second half.

"We are open to diverse applications and exciting interdisciplinary collaboration opportunities, and we hope to create and contribute to a safer, healthier, and more efficient living environment," said UM research engineer Xiaoxiao Du.

The study has been published online in IEEE Robotics and Automation Letters, and will appear in a forthcoming print edition.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100901378174941
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
亚洲国产老妈| 激情视频一区二区| 欧美日本一区二区三区| 欧美日本高清| 国产精品久久久久国产a级| 国产伦精品一区二区三区四区免费 | 亚洲国产精品一区二区久| 亚洲激情午夜| 亚洲一区在线视频| 欧美在线视频不卡| 欧美成人a视频| 国产精品久久一区二区三区| 国产主播一区二区| 亚洲美女在线国产| 欧美在线观看一区二区| 欧美刺激性大交免费视频| 国产精品二区在线观看| 狠狠色狠狠色综合| 亚洲午夜在线观看| 美女视频黄a大片欧美| 国产精品xnxxcom| 精品91久久久久| 亚洲午夜高清视频| 久久综合国产精品台湾中文娱乐网| 欧美日韩三级| 狠狠色综合网| 亚洲一区二区毛片| 免费影视亚洲| 国产日韩欧美一区二区| 日韩亚洲视频| 免费成人av在线看| 国产精品乱码一区二区三区| 亚洲国产精品小视频| 午夜在线精品偷拍| 欧美日韩国产成人在线91| 黄色日韩精品| 亚洲欧美日本国产有色| 欧美激情精品久久久久| 国产综合视频| 亚洲一本视频| 欧美激情亚洲激情| 激情久久综艺| 午夜精品电影| 欧美日韩另类国产亚洲欧美一级| 黄页网站一区| 欧美一区日本一区韩国一区| 欧美三级电影一区| 亚洲欧洲一区| 开元免费观看欧美电视剧网站| 国产欧美日韩中文字幕在线| 一本在线高清不卡dvd| 美女国内精品自产拍在线播放| 国产精品揄拍一区二区| 制服丝袜亚洲播放| 欧美精品亚洲精品| 亚洲风情在线资源站| 久久国产黑丝| 国产欧美日韩精品在线| 亚洲视频在线观看网站| 欧美激情综合亚洲一二区| 亚洲成色www久久网站| 久久久久久91香蕉国产| 国产色婷婷国产综合在线理论片a| 亚洲宅男天堂在线观看无病毒| 欧美日韩国产系列| 亚洲精品国偷自产在线99热| 毛片一区二区三区| 亚洲高清自拍| 免费在线播放第一区高清av| 伊人天天综合| 久久婷婷综合激情| 精品成人一区二区三区| 久久久久久自在自线| 国产综合久久久久久| 欧美一区二区三区在线视频| 国产农村妇女精品一二区| 亚洲免费在线精品一区| 国产精品国产a| 亚洲一区二区三区激情| 国产精品极品美女粉嫩高清在线| 一区二区三区欧美视频| 欧美日韩免费在线| 中国女人久久久| 国产精品国产三级国产普通话蜜臀 | 在线午夜精品自拍| 欧美日韩视频在线| 一个色综合av| 欧美午夜a级限制福利片| 在线视频欧美精品| 欧美视频在线观看 亚洲欧| 一区二区三区四区精品| 欧美三区在线| 午夜精品久久久久久久蜜桃app| 国产精品久久久久久久久久ktv| 亚洲一区www| 国产精品视频不卡| 欧美伊人精品成人久久综合97| 国产亚洲精品aa午夜观看| 久久精品人人做人人综合| 激情综合中文娱乐网| 欧美chengren| 艳女tv在线观看国产一区| 欧美日韩中文另类| 午夜精品久久久久99热蜜桃导演| 国产精品一区二区三区成人| 欧美在线视频导航| 黑人一区二区三区四区五区| 麻豆av一区二区三区久久| 亚洲日本中文字幕区| 欧美日韩国产在线播放网站| 亚洲视频中文字幕| 国产日产欧产精品推荐色| 亚洲国产综合在线| 欧美日韩裸体免费视频| 亚洲已满18点击进入久久| 国产日韩精品一区二区三区在线| 久久成年人视频| 亚洲国产福利在线| 欧美日本不卡| 午夜精品久久久久影视| 一区二区三区在线观看国产| 欧美精品观看| 亚洲欧美在线视频观看| 韩国v欧美v日本v亚洲v| 欧美国产欧美亚州国产日韩mv天天看完整| 亚洲日本欧美天堂| 国产精品久久久久久av下载红粉| 久久精品动漫| 亚洲激情校园春色| 国产精品成人一区二区网站软件| 久久久国产精彩视频美女艺术照福利| 亚洲国产精品va在看黑人| 欧美三级视频| 久久av一区二区三区漫画| 亚洲国产精品一区二区www| 欧美日韩综合在线免费观看| 欧美在线视频免费播放| 亚洲欧洲另类| 国产日韩欧美电影在线观看| 欧美成人精品不卡视频在线观看| 亚洲午夜视频在线观看| 精品91久久久久| 欧美日韩一区二区三区在线观看免| 小嫩嫩精品导航| 亚洲区第一页| 国产精品影视天天线| 欧美成人首页| 久久av一区二区| 日韩视频在线观看一区二区| 国产亚洲美州欧州综合国| 欧美精品成人在线| 久久精品在线播放| 国产精品99久久久久久久久久久久 | 欧美日韩伊人| 久久九九免费视频| 一区二区三区不卡视频在线观看| 国产视频不卡| 欧美日韩视频一区二区| 免费试看一区| 性做久久久久久久免费看| 日韩亚洲精品电影| 激情偷拍久久| 国产毛片一区二区| 欧美日韩精品福利| 老色批av在线精品| 久久精品国产2020观看福利| 99在线热播精品免费| 在线免费观看欧美| 国产日韩av一区二区| 欧美色综合网| 欧美成人高清视频| 久久国产精品高清| 亚洲欧美国产精品va在线观看| 亚洲伦理精品| 在线精品视频免费观看| 国产人成精品一区二区三| 欧美日韩一区二区精品| 牛人盗摄一区二区三区视频| 亚洲欧美一区二区三区在线| 99精品视频免费在线观看| 亚洲国产精品激情在线观看| 尤物网精品视频| 国产一区二区按摩在线观看| 国产精品成人在线观看| 欧美日本在线视频| 欧美a一区二区| 久久综合色播五月| 久久久久国产精品一区二区| 久久se精品一区精品二区| 亚洲欧美日韩精品久久亚洲区| 一本久久综合亚洲鲁鲁| 亚洲日本中文| 亚洲欧洲精品一区二区三区不卡| 一区免费观看| 黄色成人在线观看| 狠狠v欧美v日韩v亚洲ⅴ| 国内精品嫩模av私拍在线观看| 国产欧美一区二区三区沐欲 | 亚洲国产精品电影在线观看| 黄色欧美日韩| 国产在线一区二区三区四区| 国产欧美亚洲一区| 国产精品一区二区三区观看| 国产精品卡一卡二卡三|