国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Stanford researchers use machine learning to improve efficiency in environmental protection

Source: Xinhua| 2019-04-09 14:45:06|Editor: mingmei
Video PlayerClose

SAN FRANCISCO, April 8 (Xinhua) -- Researchers with Stanford University are employing new artificial intelligence (AI) technology to improve the efficiency of environmental protection by accurately detecting and identifying sources of possible pollution from animal farms, a Stanford newsletter said Monday.

Stanford law professor Daniel Ho and his PhD student Cassandra Handan-Nader have found a way for machine learning to efficiently locate industrial animal operations on farms in the United States and help regulators assess environmental risks on each facility, said the Stanford Report, a newsletter delivering news about the university community via email.

The newsletter said the U.S. Environmental Protection Agency has regarded agriculture as the leading source of pollutants into the country's water supply system.

A huge proportion of the pollution was believed to come from large-scale, concentrated animal feeding operations, known as CAFOs, said the Stanford Report.

The scarcity of CAFOs information has in some cases made it virtually impossible for regulators to monitor potential facilities that discharge pollutants into U.S. waterways, according to the newsletter.

"This information deficit stifles enforcement of the environmental laws of the United States," Ho said.

In order to improve environmental protection, Ho and Handan-Nader, who were helped by a group of students in economics and computer science with data analysis, resorted to several open source tools to retrain an existing image-recognition model to look for large-scale animal facilities.

The Stanford researchers used the data collected by two nonprofit groups and the enormous database of satellite images by the U.S. Department of Agriculture in an effort to detect poultry facilities in North Carolina.

They found their algorithm could find 15 percent more poultry farms than through manual enumeration, said the newsletter.

"The model detected 93 percent of all poultry CAFOs in the area and was 97 percent accurate in determining which ones appeared after the feed mill opened," the two Stanford researchers wrote in their paper published in the online journal Nature Sustainability on Monday.

They believed their algorithm could map 95 percent of the existing large-scale animal farms with fewer than 10 percent of the resources spent on manual counting of those locations.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001379625001
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
亚洲欧美日韩区| 亚洲免费精彩视频| 国产精品videosex极品| 欧美黄色一区二区| 欧美日韩免费| 欧美视频网站| 国产亚洲欧美另类中文| 亚洲欧洲一区二区三区| 亚洲一区999| 午夜精品久久久久久久| 这里只有精品视频在线| 亚洲一区二区三区色| 亚洲欧美经典视频| 噜噜噜躁狠狠躁狠狠精品视频| 欧美成人精品在线观看| 欧美日韩国产999| 国产日产欧产精品推荐色| 黑人一区二区三区四区五区| 1204国产成人精品视频| 亚洲无玛一区| 久久精品国产久精国产爱| 美日韩精品视频免费看| 欧美午夜欧美| 国产深夜精品| 国产私拍一区| 亚洲精品在线免费| 亚洲在线免费观看| 蜜桃av久久久亚洲精品| 欧美午夜片在线观看| 国产欧美精品一区二区三区介绍| 亚洲国产欧美日韩| 一本色道久久综合精品竹菊 | 欧美午夜一区二区| 国产精品午夜av在线| 国产一区二区日韩精品欧美精品| 国产麻豆综合| 在线观看亚洲精品视频| 一区二区三区高清| 鲁大师影院一区二区三区| 欧美日韩午夜| 国内外成人免费激情在线视频| 国产精品女同互慰在线看| 黄色精品一区| 夜夜嗨av一区二区三区| 久久精品视频网| 欧美日本精品在线| 国产原创一区二区| 亚洲美女中文字幕| 免费视频一区| 韩国v欧美v日本v亚洲v| 亚洲一区二区三区视频| 欧美国产一区二区| 国产亚洲精久久久久久| 亚洲精品乱码久久久久久蜜桃麻豆| 久久精品道一区二区三区| 欧美久久久久久久| 国产精品白丝jk黑袜喷水| 亚洲国产精品一区二区www在线| 亚洲一区二区久久| 欧美成黄导航| 日韩视频在线观看一区二区| 亚洲精品免费在线| 欧美日韩性生活视频| 国产欧美日韩中文字幕在线| 欧美高清视频一区| 国产精品综合| 亚洲美女毛片| 美女精品在线| 国产精品永久免费在线| 免费一级欧美片在线播放| 国产在线精品二区| 亚洲欧美激情视频在线观看一区二区三区 | 久久精品国语| 国产精品av久久久久久麻豆网| 一区二区三区亚洲| 亚洲少妇诱惑| 欧美成人日韩| 激情久久综合| 久久久欧美精品| 国产精品一区二区三区成人| 亚洲第一色在线| 久久综合九色综合久99| 国产在线视频欧美一区二区三区| 欧美亚洲一级| 国产精品视频免费观看www| 中国成人亚色综合网站| 国产精品国产三级国产普通话三级| 亚洲精品视频在线观看网站| 欧美岛国激情| 91久久久精品| 麻豆精品国产91久久久久久| 亚洲第一主播视频| 久久性天堂网| 国产精品夜夜夜一区二区三区尤| 亚洲欧美日韩视频二区| 国产精品久久二区| 亚洲欧美日韩综合aⅴ视频| 欧美高清自拍一区| 好看的亚洲午夜视频在线| 久久在线视频| 禁断一区二区三区在线| 欧美伊人久久| 国产一区二区你懂的| 久久久久久亚洲综合影院红桃 | 欧美jizz19性欧美| 狠狠色伊人亚洲综合网站色| 久久久久国产精品厨房| 国产日韩视频| 亚洲无线观看| 欧美人成免费网站| 欲香欲色天天天综合和网| 亚洲你懂的在线视频| 久久国产乱子精品免费女| 亚洲激情av在线| 国产一区二区三区四区hd| 欧美激情第一页xxx| 久久精品一级爱片| 午夜在线a亚洲v天堂网2018| 欧美三级资源在线| 欧美理论片在线观看| 美女日韩欧美| 欧美mv日韩mv国产网站| 久久性色av| 亚洲成色777777女色窝| 久久综合中文色婷婷| 亚洲自拍另类| 韩日视频一区| 国产在线拍揄自揄视频不卡99| 国产精品视频| 国产精品青草久久久久福利99| 亚洲欧美在线观看| 亚洲午夜激情网站| 亚洲欧美另类在线| 亚洲欧美激情四射在线日| 亚洲一区二区黄| 欧美一区1区三区3区公司| 久久久久久欧美| 欧美黄色小视频| 欧美日韩在线影院| 国产精品视频专区| 激情视频亚洲| 亚洲人成毛片在线播放| 欧美三级电影一区| 国产精品红桃| 欧美日韩在线免费观看| 欧美视频三区在线播放| 国产欧美日韩精品在线| 亚洲国产精品电影在线观看| 99视频有精品| 久久久国产91| 免费久久99精品国产自在现线| 欧美3dxxxxhd| 国产日韩欧美在线| 亚洲网站在线播放| 欧美乱妇高清无乱码| 亚洲福利精品| 免费久久精品视频| 一区二区亚洲精品| 先锋亚洲精品| 国产农村妇女毛片精品久久麻豆| 日韩亚洲国产精品| 欧美亚洲一区二区三区| 国产精品乱码| 亚洲影院色无极综合| 欧美视频在线视频| 99在线热播精品免费99热| 欧美黄在线观看| 最近看过的日韩成人| 欧美不卡视频| 亚洲经典在线看| 久久精品男女| 国产视频久久网| 久久久久久亚洲精品中文字幕 | 久久亚洲欧美| 亚洲福利视频三区| 欧美xxx在线观看| 日韩视频免费观看高清完整版| 欧美高清不卡| 亚洲国产欧美在线人成| 亚洲——在线| 欧美久久电影| 亚洲一区二区不卡免费| 国产欧美一区二区三区在线老狼| 欧美亚洲日本一区| 一区视频在线| 欧美精品自拍偷拍动漫精品| 999在线观看精品免费不卡网站| 欧美视频一区二区三区四区| 亚洲一区中文字幕在线观看| 国产日韩在线一区| 另类亚洲自拍| 一区二区三区视频在线看| 国产精自产拍久久久久久| 久久亚洲欧洲| 一区二区精品在线观看| 国产一区久久| 欧美日韩免费高清| 久久精品国产在热久久 | 国产日产欧产精品推荐色| 久久亚洲捆绑美女| 亚洲午夜未删减在线观看| 黄色成人在线观看| 国产精品a级| 欧美激情一区在线观看|